我的老师是学霸_第二百六十九章 等差素数猜想 首页

字体:      护眼 关灯

上一章 目录 下一页

   第二百六十九章 等差素数猜想 (第1/2页)

    第二百六十九章

    “嘿,这届的菲奖得主很强吗?”

    “当然,我感觉最弱的那个,都有1.5个西蒙。”

    “不不不,我感觉最弱的那个起码有1.7个西蒙。”

    “这届天才名单里的人都不行啊,连0.8个西蒙这个平均线都没过。”

    “呵,我未来,一定要成为2.0个西蒙的超级大佬!”

    西蒙的脑海里,一时间闪过数张画面。

    一想到自己未来有可能会成为一个计量单位,西蒙就有一种浑身蛋疼的感觉。

    因为那画面太美,简直不敢想象。

    西蒙想要名留青史,这没错。

    但并非是通过这种方式。

    西蒙幽怨的眼神望着顾律。

    而顾律一副像是什么都未发生过的样子,眼睛一眨不眨的盯着台上。

    “开始了。”

    顾律低声开口。

    果然,台上的康斯坦丁已经打开幻灯片,将本次一小时会议报告的题目投影到幕布上。

    而在见到康斯坦丁这次会议报告的题目,台下不少人都是瞳孔猛地一缩。

    《proofofequivalenceprimeconjecturewhenkiseven》。

    翻译过来,就是《当k为偶数时,等差素数猜想的证明》!

    素数,一直是数论领域老生常谈的问题。

    像是著名的哥德巴赫猜想问题,孪生素数猜想问题,西潘塔猜想,研究的对象皆是素数。

    而这个等差素数猜想,自然也不例外。

    等差素数猜想,是在上个世纪八十年代,由两位米国数学家提出的一个数论领域的著名猜想。

    等差素数猜想的内容很简单。

    【存在任意长度的素数等差数列!】

    就这么简单的一句话。

    素数是什么,大家都清楚。

    只能被一和自身整除的自然数就是素数。

    而等差数列,高中就学过。

    简单来说,就是问,是否存在一个全部由素数组成的等差数列,而且这个数列包含的素数个数为任意个。

    可以说,这个等差素数猜想,只要是个有高中生学历的人,都可以轻松的读懂。

    但读懂是一回儿事,能否证出来又是另一回事了。

    哥德巴赫猜想还是连小学生都能看懂呢,但几百年过去,这座大山仍旧屹立在那。

    和哥德巴赫猜想一样。

    等差素数猜想虽然简单易懂,但证明起来,却并非是一件易事。

    别说是高中生,连硕士生、博士生,面对这种级别的猜想,依旧是束手无策。

    至于那些想用初等数论知识将其证明的民科,只能用天真二字来形容。

    早在数十年前,数论领域的诸位大佬便一致认为,想要成功证明出等差素数猜想,初等数论的知识是百分百不可能的。

    起码,要高等数论,甚至更为高深晦涩的知识和理论才可以。

    …………

    再说一下等差素数猜想在数论界的地位。

    之前就提过,数论领域的猜想是最多的。

    有名字的,没名字的,全部加在一起,粗略数一数,起码有几千个。

    而顾律在去年攻克的cohen-lenstra猜想,虽然有名字,但论知名度和学术价值并不算多么高。

    数论领域的数千个猜想,可以简单的分成几个梯
加入书签 我的书架

上一章 目录 下一页